111 | 1 | 58 |
下载次数 | 被引频次 | 阅读次数 |
以汽车用冷轧高强复相钢为研究对象,利用SEM,EBSD,XRD和单向拉伸等检测手段,研究了退火温度对汽车用复相钢组织与性能的影响.结果表明:实验钢经不同温度退火后空冷得到的组织均为铁素体、马氏体和贝氏体;退火温度越高,马氏体和贝氏体的含量越多,铁素体的含量越少;随着退火温度的升高,实验钢的屈服强度及抗拉强度均呈现先升高后降低的趋势,伸长率则与之相反.XRD分析结果表明,实验钢经不同温度退火后,奥氏体全部发生转化,空冷至室温时无残余奥氏体存在.当退火温度为850℃时,实验钢获得了最佳力学性能,其抗拉强度为990 MPa,屈服强度为818 MPa,伸长率为23.3%,强塑积为23.07 GPa·%.
Abstract:Taking cold-rolled high-strength duplex steel for automobiles as the research object, the effect of annealing temperature on the microstructure and properties of duplex steel for automobiles has been studied by SEM, EBSD, XRD, and uniaxial tensile testing methods. The results show that the microstructures of experimental steel after annealing at different temperatures and air cooling are all ferrite, martensite, and bainite. The higher the annealing temperature, the more martensite and bainite content, and the less ferrite content. The yield strength and tensile strength of the test steel show a trend of first increasing and then decreasing with the increase of annealing temperature, while the elongation is the opposite. The XRD analysis results indicate that after annealing at different temperatures, all austenite in the test steel undergoes transformation, and no residual austenite exists when air cooled to room temperature. When the annealing temperature is 850 ℃, the experimental steel obtains the best mechanical properties, with a tensile strength of 990 MPa, a yield strength of 818 MPa, an elongation of 23.3%, and a strength plastic product of 23.07 GPa·%.
[1] 熊自柳,齐建军,孙力,等.高强度双相钢的成形性能[J].金属热处理,2021,46(5):66-71.(Xiong Ziliu,Qi Jianjun,Sun Li,et al.Formability of high strength dual phase steels[J].Heat Treatment of Metals,2021,46(5):66-71.)
[2] 谢春乾,杨瑞枫,李振,等.退火工艺对780 MPa级复相钢组织与性能的影响[J].金属热处理,2018,43(7):171-174.(Xie Chunqian,Yang Ruifeng,Li Zhen,et al.Effect of annealing process on microstructure and properties of 780 MPa complex phase steel[J].Heat Treatment of Metals,2018,43(7):171-174.)
[3] 陈连生,李跃,王安东,等.两相区不同等温时间下低碳复相钢的组织与性能[J].金属热处理,2018,43(7):84-88.(Chen Liansheng,Li Yue,Wang Andong,et al.Microstructure and properties of low carbon multiphase steel for different isothermal time in two-phase region[J].Heat Treatment of Metals,2018,43(7):84-88.)
[4] 田文波,何方,刘自权.钛合金化HC700/980CP冷轧复相钢退火工艺研究[J].河北冶金,2017(8):17-19.(Tian Wenbo,He Fang,Liu Ziquan.Study on annealing process of titanium alloying cold rolled complex phase HC700/980CP steel[J].Hebei Metallurgy,2017(8):17-19.)
[5] 康永林.汽车轻量化先进高强钢与节能减排[J].钢铁,2008,43(6):1-7.(Kang Yonglin.Lightweight vehicle,advanced high strength steel and energy-saving and emission reduction[J].Iron & Steel,2008,43(6):1-7.)
[6] 李振,宋浩源,程晓杰,等.一种冷轧生产780 MPa级的CP钢工艺控制方法:CN201811476423.5[P].2020-10-20.(Li Zhen,Song Haoyuan,Cheng Xiaojie,et al.A process control method for the production of 780 MPa grade CP steel by cold rolling:CN201811476423.5[P].2020-10-20.)
[7] 李扬,刘汉武,杜云慧,等.汽车用先进高强钢的应用现状和发展方向[J].材料导报,2011,25(13):101-104.(Li Yang,Liu Hanwu,Du Yunhui,et al.Applications and developments of AHSS in automobile industry[J].Materials Review,2011,25(13):101-104.)
[8] 潘辉,王昭东,周娜,等.Ti微合金化700 MPa级高强钢性能均匀性研究[J].轧钢,2017,34(2):7-9.(Pan Hui,Wang Zhaodong,Zhou Na,et al.Research on the performance uniformity of 700 MPa grade Ti-microalloying high strength steel[J].Steel Rolling,2017,34(2):7-9.)
[9] 惠亚军,潘辉,李文远,等.1 000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J].金属学报,2017,53(2):129-139.(Hui Yajun,Pan Hui,Li Wenyuan,et al.Study on heating schedule of 1 000 MPa grade Nb-Ti microalloyed ultra-high strength steel[J].Acta Metallurgica Sinica,2017,53(2):129-139.)
[10] 张弛,方鸿生,杨志刚,等.锰硅系贝氏体/马氏体复相钢中贝氏体精细结构的研究[J].金属学报,2001,37(6):561-566.(Zhang Chi,Fang Hongsheng,Yang Zhigang,et al.The fine structure of the bainite/martensite dual phase steel[J].Acta Metallrugica Sinica,2001,37(6):561-566.)
[11] Pinard P T,Schwedt A,Ramazani A,et al.Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements[J].Microscopy and Microanalysis,2013,19(4):996-1006.
基本信息:
DOI:10.14186/j.cnki.1671-6620.2024.06.011
中图分类号:TG142.1;TG156.2
引用信息:
[1]吴亚辉,张波,冯运莉等.退火温度对冷轧复相钢组织和性能的影响[J].材料与冶金学报,2024,23(06):585-591.DOI:10.14186/j.cnki.1671-6620.2024.06.011.
基金信息:
国家自然科学基金项目(51974134); 河北省科技重大专项项目(21281008Z); 中央引导地方科技发展资金项目(236Z1014G)